
Eur. Phys. J. B 23, 267–271 (2001) THE EUROPEAN
PHYSICAL JOURNAL B
c©

EDP Sciences
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Properties of a growing random directed network
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Abstract. We study a number of properties of a simple random growing directed network which can be
used to model real directed networks such as the world-wide web and call graphs. We confirm numerically
that the distributions of in- and out-degree are consistent with a power law, in agreement with previous
analytical results and with empirical measurements from real graphs. We study the distribution and mean
of the minimum path length, the high degree nodes, the appearance and size of the giant component and
the topology of the nodes outside the giant component. These properties are compared with empirical
studies of the world-wide web.

PACS. 02.50.Cw Probability theory – 05.40.-a Fluctuation phenomena, random processes, noise, and
Brownian motion – 89.75.Hc Networks and genealogical trees

1 Introduction

Understanding the geometry and evolution of complex
distributed networks is a major challenge for statistical
physics [1,2]. These networks are very important tech-
nologically, and many of them display power law distri-
butions of node degree, a feature not found in standard
random graphs [3]. There are a number of important ques-
tions to answer. These include how to make use of their
unusual connectivity to create efficient search and crawl
algorithms [4], their resistance to random or intentional at-
tack [5,6], how they will evolve over time, and how we can
manage their geometry to make them more efficient [7,8].

The www graph is the directed graph whose nodes cor-
respond to pages on the world-wide web and whose edges
correspond to hyperlinks between them. In [9–11] experi-
ments on the local and global properties of the www graph
were carried out using www crawls. The main result ob-
tained was that the in- and out-degree distributions are
both power law with different exponents. Additionally a
number of other features of the directed graph were iden-
tified. These included

(i) a maximal mutually reachable subset of nodes known
as a strongly connected component (SCC);

(ii) an IN region containing nodes not in the SCC from
which there are paths into the SCC;

(iii) an OUT region formed from nodes not in the SCC
that can be reached from the SCC;

(iv) tendrils formed from nodes not in the SCC, IN or
OUT which are connected out of IN or in to OUT.

In addition there are a small number of disconnected
components. The SCC contains about 56 million nodes,

a e-mail: G.J.Rodgers@brunel.ac.uk

and the IN and OUT regions, and the tendrils, contain
about 44 million nodes each [11]. The strongly connected
component is sometimes called the giant component. The
relative sizes of these regions are very different from those
that would be predicted using Poisson connectivity statis-
tics. This suggests that models to explain this structure
must include non-Poisson statistics as a key indegredient,
or generate such statistics as part of their kinetics.

In [12], a model of a directed growing random graph
in which nodes with high degree were more likely to gain
new edges was introduced and solved. The distributions
of in- and out-degree were both found to be power law,
with, in general, different exponents. By adjusting the pa-
rameters in the model, the model was found to match the
exponents in the power laws and the mean connectivity of
the www [11].

In this paper we study some more detailed global and
local properties of the graph introduced in [12], with a
view to understanding other properties of the www graph
identified in [11]. A similar approach was recently taken
in [13] to an undirected growing graph and in [14] to de-
termine the giant component of generic directed networks.
In addition to the www, our model is applicable to other
real directed multigraphs with power law degree distribu-
tions, such as the call graph [15]. This graph is formed
from edges which represent telephone calls made in one
day and nodes which are phone numbers that make or
receive a call in that day.

This paper is organised as follows. In Section 2 we
describe the model in more detail. In Sections 3, 4 and 5
we consider the minimum path on the graph, the nodes
with the highest connectivity and the appearance of the
giant component, respectively. In Section 6 we examine
the number and size of the connected components and in
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Fig. 1. Log of frequency against log of in-degree for a graph
of 107,000 nodes and 800,000 edges.

Section 7 we summarise our findings and make suggestions
for future work.

2 The model

In [12], a model for a growing random directed network
was introduced which yields a connected multi-graph. At
each time step,

(a) with probability p a new node is attached to a
node with in-degree i with rate i+ λ and

(b) with probability q = 1 − p a new directed edge is
formed from a node with out-degree j to a node with
in-degree i with rate (i+ λ)(j + µ).

The model has three tunable parameters, 0 ≤ p ≤ 1,
λ > 0 and µ > −1. As the network evolves the degree dis-
tribution, Nij(t), defined as the average number of nodes
with in-degree i and out-degree j at time t, obeys the
equation [12]

dNij(t)
dt

=
[

(i− 1 + λ)Ni−1,j − (i+ λ)Nij
I + λN

]
+ q

[
(j − 1 + µ)Ni,j−1 − (j + µ)Nij

J + µN

]
+pδi0δj1

(1)

where i ≥ 0 and j ≥ 1. The first term on the right hand
side of equation (1) represents the sum of the changes of
in-degree due to processes (a) and (b), the second term
represents the change in out-degree due to process (b)
and the final term represents the addition of new nodes.
The total number of nodes is N(t) =

∑
ij Nij(t), the total

in-degree is I(t) =
∑
ij iNij(t) and the total out-degree is

J(t) =
∑
ij jNij(t). It is simple to show that N(t) = pt+2

and I(t) = J(t) = t+1, where we assume that initially the
network is composed of two nodes connected together. By
solving equation (1) for a few values of i and j, it is easy
to see that in general Nij(t) = tnij for large t. Hence it
is possible to write down a recursive relation for nij , from

Fig. 2. Log of frequency against log of out-degree for a graph
of 107,000 nodes and 800,000 edges.

which it is possible to show [12] that the in-degree and
out-degree distributions are power laws with exponents

νin = 2 + pλ, νout = 1 + q−1 + µpq−1 (2)

respectively. The network also displays non-trivial depen-
dence between in- and out-degree, so that the joint prob-
ability distribution of in- and out-degree at each site is
not equal to the product of the distributions of in- and
out-degree. It seems likely that this will be the case for
both the www and the call graph although to date this
question has not been investigated. It is also important to
note that the degree distributions on neighbouring nodes
are not independent [16]. Again this property is likely to
hold for the www but will be much more difficult to mea-
sure than the correlation between in- and out-degree on a
single node.

In [11] it was shown that the average degree of each
node on the www is ≈ 7.5, that νin ≈ 2.1 and νout ≈ 2.7.
Using equation (2), and noticing that the average degree
of each node is 1/p, gives values for the parameters in the
model [12] as

p = 0.13, λ = 0.75, µ = 3.55. (3)

We have performed a simulation of this model with values
of the parameters given by equation (3). The distribution
of in- and out-degree is shown in Figures 1 and 2 for a
graph grown to a size of 107,000 nodes and 800,000 edges.

As predicted [12], these distributions are power laws
with exponents given by equation (2). These figures are
similar to those obtained for the www [11] and the call
graph [15] in that the power law for the in-degree is clearly
seen over a wider range of degrees than that for the out-
degree.

3 Minimum path

The length of the minimum path between each pair of
nodes in the directed graph may be found by consider-
ing the adjacency matrix, A = aij , where aij = 1 if
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Fig. 3. Frequency against minimum path length for a
40 graphs with 5000 edges and an average of 671 nodes.

there exists a directed edge from node i to node j and
aij = 0 otherwise. This method considers increasing pow-
ers of A. The elements of Ak show the numbers of paths
of length k between each pair of nodes. Thus, the length
of the minimum path between node i and node j equals
k if the (i, j) element of Ak is positive and the corre-
sponding elements of A,A2, . . . , Ak−1 are all zero. The
method is of complexity O(N3). There are, however, more
computationally efficient methods available. For example,
Dijkstra’s method [17] for finding the minimum path from
a specified node to all other nodes is of complexity O(N2)
in its standard form. This method can, however, be im-
plemented with complexity O(E + N logN) [18], where
E is the number of edges. Thus, finding the lengths of
the minimum paths between all pairs of nodes is of com-
plexity O(NE +N2 logN). This implementation exploits
the sparsity present in many graphs, including the ones
generated in this application.

Applying the multiplication method described above
to the model in Section 2 we found that 32± 2% of node
pairs had a directed path between them. This is compa-
rable with the www where paths exist between 24% of
pairs [11]. A typical distribution of minimum path lengths
is shown in Figure 3. This is very similar to that obtained
in [19] for the www graph.

One can make an estimate of the mean minimum path
length by the following heuristic argument. Define the
mean minimum path length to be l and the mean out-
degree within the strongly connected cluster to be m.
Then counting up all the nodes we have that

ml ∼ N (4)

and hence

l ∼ logN
logm

· (5)

This expression assumes that there are no correlations be-
tween the degree distributions at neighbouring nodes and
that all pairs of nodes that have a finite path between
them are part of the SCC. Consequently this result should
be used with some caution. In Figure 4 there is a plot of
the mean minimum path length against logN . From the

Fig. 4. Mean minimum path length against logN for 40 real-
isations of each random graph.

slope of the line one can estimate that the mean out-degree
m ≈ 50. This indicates that the degree distribution within
the SCC is very different from that of the network as a
whole, which has a mean out-degree of 7.5. This also sug-
gests that the contribution of the highly connected nodes
to the shortest paths is very high.

In [20] a similar, though more sophisticated, argument
was used to obtain an expression for the mean minimum
path length as a function of the system size and the mean
number of first and second nearest neighbours. Applied to
our data, the expression in [20] yields similarly high values
for the mean connectivities, for the reasons given above.

4 Highly connected nodes

It has been established that high connectivity nodes play
an important role as hubs in communication and network-
ing. This fact is being exploited to design and build effi-
cient search and crawl algorithms. In [4] a number of local
search strategies were introduced for power law networks
which utilised the high connectivity of some nodes. These
strategies yielded search times that scaled sub-linearly
with the size of the graph. The analysis in [4], and that
in an earlier work on undirected graphs [15], used a power
law degree distribution with a cut-off in the large degree
limit. This was done by introducing by hand a single node
with the largest degree, which scaled as a power of N .

In our model it is much more natural to allow the
degree of the most highly connected nodes to emerge nat-
urally. Imagine that the degree distribution of a network
with N nodes is power law, with exponent ν > 2. Then
the average degree of the most highly connected node, m,
is given by

∞∑
i=m

i−ν ∼ 1
N

(6)

which in the limit of large N , and hence m, yields

m ∼ N 1
ν−1 . (7)
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Fig. 5. Log of largest degree against log N averaged over 20
realisations of each graph. The upper line is the in-degree and
the lower the out-degree. The straight lines are given by equa-
tion (8).

By using the values of the power laws for the www, we find
that the largest in-degree min and the largest out-degree
mout behave as

min ∼ N0.91, mout ∼ N0.59. (8)

The results were verified numerically, as shown in Figure 5.
These predictions are a direct consequence of the

power-law distributions of in- and out-degree. Applying
them to one recent study of the www [11] (where N =
2× 108), suggests there was a node visited on that crawl
of the www with an in-degree of about 110 million hyper-
links and another node (probably different) with an out-
degree of 780 thousand hyperlinks. These values appear
to be plausible, since pages with out-degree greater than
this are easy to find on the www. For instance, in July
2001, searching on the word “Netscape” in the Altavista
search engine revealed a results page with an out-degree
of over 8 million.

5 Giant component

The appearance of a giant strongly connected component
in this system is analogous to the formation of a gel in
an aggregation process. This transition is signalled by the
divergence of some moment of the size distribution (see
for instance [21]). Consequently, we expect the formation
of a giant component to be signalled by the divergence
of a moment of Nij(t). The lowest non-trivial moment of
Nij(t) is M(t), defined by

M(t) =
∑
ij

ijNij(t). (9)

By multiplying equation (1) by ij and summing over i and
j we can show that M(t) obeys the differential equation

dM(t)
dt

= M(t)
[

1
I + λN

+
q

J + µN

]
+

λJ

I + λN
+

qµI

J + µN
· (10)

It is simple to show that for large times M(t) ∼ tα where
α = max(β, 1) and

β =
1

1 + pλ
+

q

1 + pµ
· (11)

Hence β = 1 is a transition point in the behaviour of M(t).
When β < 1 the average number of routes through a node
(= M(t)/N(t)) is finite, whereas for β ≥ 1 it diverges as
t→∞.

Furthermore, in [20] it was shown that the condition
for the existence of a giant component is∑

ij

(2ij − i− j)Nij > 0. (12)

This result holds when the degrees at neighbouring nodes
are uncorrelated, a property that does not hold for growing
random systems [16]. However, it is interesting to exam-
ine the behaviour of this summation for our model. The
second and third terms in this summation are the total
in- and out-degree I(t) and J(t). These grow linearly with
time. Hence when β > 1 the summation is dominated by
the first term as t→∞ and the condition is satisfied.

Consequently there is strong evidence that β > 1 is a
sufficient condition for the existence of a giant component
in the limit t → ∞. For the values of the parameters in
equation (3), β ≈ 1.51 and a giant component is expected
in the www. As far as we are aware, there is not enough
data about in the published literature to allow a similar
analysis for call graphs.

6 Component distribution

We used Tarjan’s algorithm [22] to find the strong com-
ponents, or maximal subsets of nodes which are mutually
reachable, for a number of graphs generated using the
procedure outlined in Section 2. This algorithm creates
a depth first spanning forest in which the vertices of each
strong component correspond to the vertices of a single
sub-tree of this forest. The complexity of the algorithm is
linear in terms of the number of edges and the number of
vertices of the graph. We found that the graphs all had
one large strongly connected component, as predicted in
the previous section. In Figure 6 there is a graph of the log
of the size of the strongly connected component against
log N . This figure was obtained by finding the size of the
giant component of 1 graph with 106 edges, 10 graphs of
105 edges, etc., down to 104 graphs with 100 edges. The
position of the intercept of the y-axis, and the fact that
the graph has slope 1.00 ± 0.02 suggests that the giant
component is of size (0.32 ± 0.02)N . This compares well
with the www [11], where around 28% of the sites are
within the strongly connected component.

Of the graphs we studied, 97% had no strong compo-
nents other than the giant component. Of the 3% that had
more than one component, the size of the smaller compo-
nents contained of order 1 nodes. Consequently, the topol-
ogy of these graphs is made up of a single strongly con-
nected giant component, no OUT region and an IN region
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Fig. 6. Log of the size of the giant component against log N .

made up of a forest of rooted trees directed towards the
giant component, which contain either 0 or O(1) nodes in
strongly connected components. The absence of an OUT
region is caused by the particular choice of kinetics for this
model. New nodes are always connected to another node
and have out-degree 1 and in-degree 0. Conversely, no new
nodes are ever added with in-degree 1 and out-degree 0,
which would provide the seed for an OUT region.

7 Discussion

We have studied a number of the properties of a net-
work introduced in [12] and compared them with empirical
studies of the www. We were also able to derive a crite-
rion for the appearance of a giant component in directed
growing networks of this type. The distribution of the min-
imum path lengths, the connectivity of the hub sites and
the size of the giant component are all in good quantitative
agreement with the www. The model does less well in cap-
turing the detailed topology of the IN and OUT regions.
One imagines that on the www these are both made up of
a forest of directed trees in which a number of connected
components are embedded. No empirical information is
available about the size or frequency of connected clusters
within the IN and OUT regions. The graph introduced
in [12] has no OUT component, but the IN component is
qualitatively the same as the www.

There are a number of avenues for further study. As
has been pointed out elsewhere, there is a general need for
empirical results from the www or call graphs on the joint
probability distribution of in- and out-degree. If this were
known then models of this type could be critically evalu-
ated and refined with greater precision. In addition, using
models of random growing directed networks, it would be

interesting to investigate which growth rules give rise to
realistic non-trivial IN and OUT regions as well as a gi-
ant component, and to characterise the size distributions
of the trees, and the size distribution of the connected
components, within the IN and OUT regions.

We would like to thank the EPSRC and the Leverhulme Trust
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